Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data.

نویسندگان

  • Kui Lin
  • Joyce R McLaughlin
  • Ashley Thomas
  • Kevin Parker
  • Benjamin Castaneda
  • Deborah J Rubens
چکیده

The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L(1) minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear wave speed recovery in sonoelastography using crawling wave data.

The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have a...

متن کامل

Feasibility of Two-Dimensional Quantitative Sonoelastographic Imaging

In this paper, a two-dimensional (2D) quantitative sonoelastographic technique for estimating local shear wave speeds from slowly propagating shear wave interference patterns (termed crawling waves) is presented. Homogeneous tissuemimicking phantom results demonstrate the ability of quantitative sonoelastographic imaging to accurately reconstruct the true underlying shear wave speed distributio...

متن کامل

Sonoelastographic imaging of interference patterns for estimation of shear velocity distribution in biomaterials.

The authors have recently demonstrated the shear wave interference patterns created by two coherent vibration sources imaged with the vibration sonoelastography technique. If the two sources vibrate at slightly different frequencies omega and omega+deltaomega, respectively, the interference patterns move at an apparent velocity of (deltaomega/2omega)upsilon(shear), where upsilon(shear) is the s...

متن کامل

Crawling Waves Speed Estimation Based on the Dominant Component Analysis Paradigm.

A novel method for estimating the shear wave speed from crawling waves based on the amplitude modulation-frequency modulation model is proposed. Our method consists of a two-step approach for estimating the stiffness parameter at the central region of the material of interest. First, narrowband signals are isolated in the time dimension to recover the locally strongest component and to reject d...

متن کامل

Muscle Tissue Characterization Using Quantitative Sonoelastography: Preliminary Results

A quantitative sonoelastographic technique for skeletal muscle tissue characterization is introduced. Experimental data was collected in both ex vivo bovine and in vivo human skeletal muscle tissue. Crawling wave sonoelastographic data was processed using a quantitative technique for estimating local shear wave speed distributions. Results on ex vivo skeletal muscle samples demonstrate shear wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 130 1  شماره 

صفحات  -

تاریخ انتشار 2011